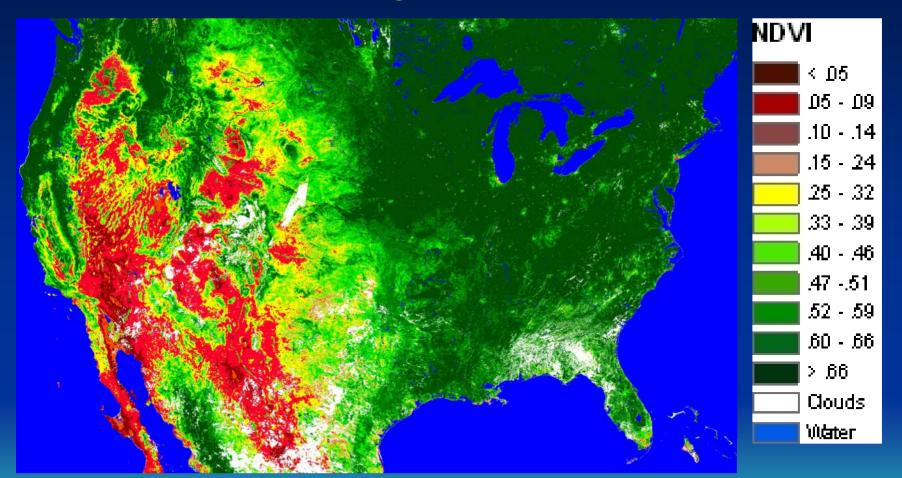
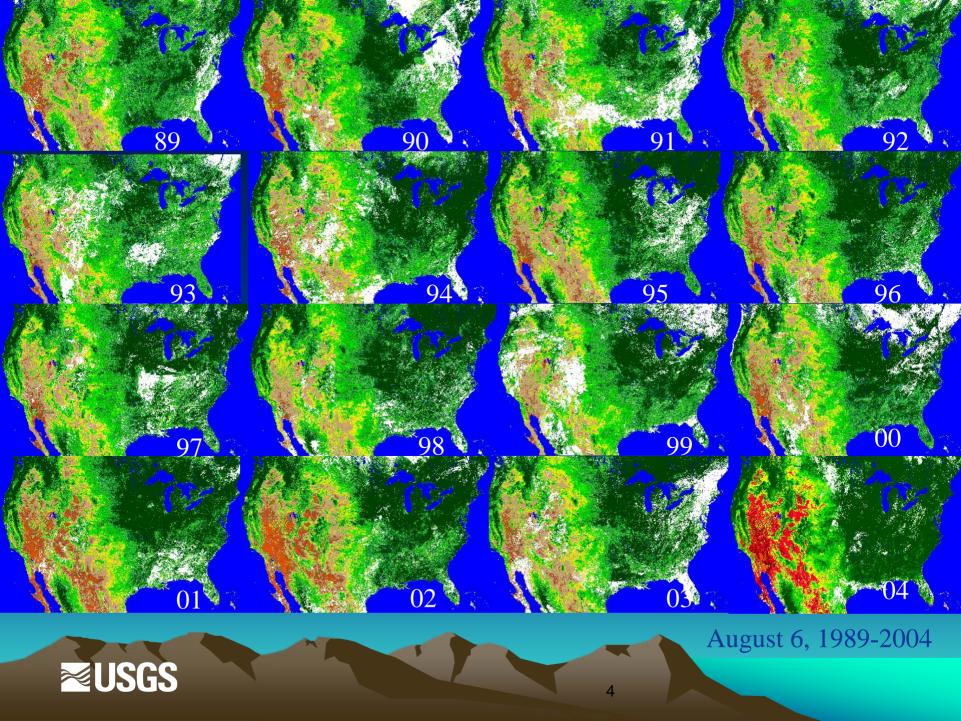
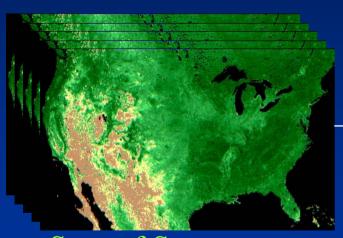
A 19-year time series of 1-km AVHRR satellite data of the conterminous United States and Alaska

Jeff Eidenshink
U.S. Geological Survey
Earth Resources Observation and Science
Center
Sioux Falls, SD 57198
eidenshink@usgs.gov

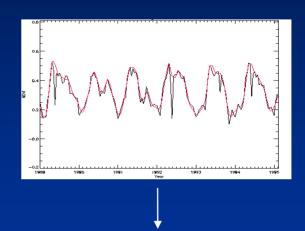

NIDIS Workshop February 6-7, 2008

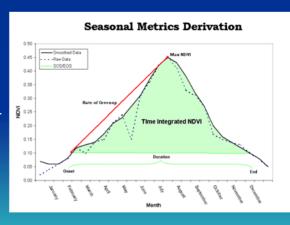

What is the conterminous US and Alaska greenness data set?

- 19 year time series of
 - weekly and biweekly maximum Normalized
 Difference Vegetation Index (NDVI)
 composites derived from 1-km AVHRR data
 - Historical average weekly greenness
 - Historical minimum greenness
 - Historical maximum greenness



Conterminous US Greenness Map August 9, 2005





19+ years of Greenness data permits studies of relative condition of land surface

Start of Season
End of Season
Length of Season
Growing season greenness
Greenness "to-date"

Processing Methods

- Geometric Registration
 - Control point matching
 - So clouds obscure ground locations
 - So not all scenes can be registered
 - Accuracy <1km RMSE</p>

Processing Methods

- Radiometric Correction
 - Data from NOAA-11, -14, -16, and -17
 AVHRR sensors have been used to produce the conterminous United States and Alaska data sets. The source of the calibration coefficients for each sensor varies, but the basic method used to develop and apply the coefficients is very similar

Radiometric Calibration

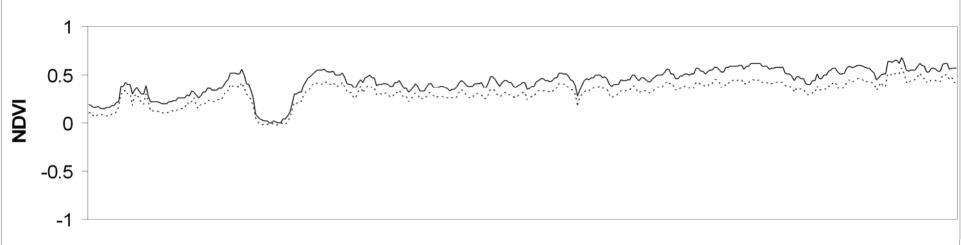
Satellite	Start Date	End Date	Source
NOAA-11	09/26/1988	03/26/1989	prelaunch
NOAA-11	03/27/1989	present	Teillet and Holben (1994)
NOAA-14	12/30/1994	06/30/1995	prelaunch
NOAA-14	06/31/1995	present	Vermote and Kaufman (1995)
NOAA-16	09/01/2000	06/24/2003	prelaunch
NOAA-16	06/25/2003	present	NOAA
NOAA-17	01/01/2004	present	NOAA

Atmospheric Correction

 Application of an atmospheric correction for ozone, water vapor absorption, and Rayleigh scattering.

 In 2001, the entire existing time series was reprocessed to include the atmospheric correction, which has been applied routinely since 2001.

Atmospheric Correction


- Water vapor absorption affects measurements in the near-infrared band (channel 2) by reducing the reflectance by 10–30 percent, depending on the viewing geometry (Tanre et al. 1992).
- Rayleigh scattering and ozone absorption affect measurements in the red band (channel 1) by increasing the reflectance by 1–2 percent, depending on the viewing geometry.
- The combination of these effects the computation of NDVI.

NIR - Red / NIR + Red

Improving Sensitivity

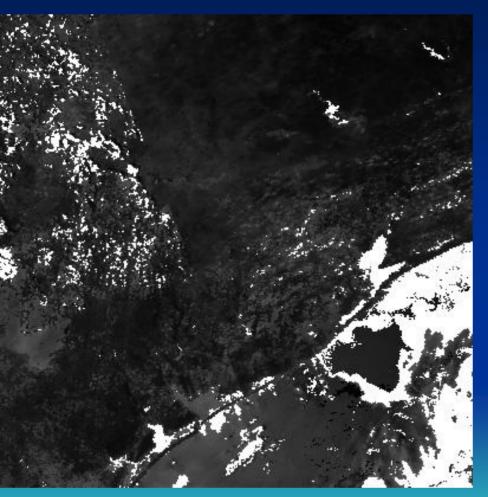
AVHRR NDVI from top of atmosphere reflectance and surface reflectance after atmospheric correction

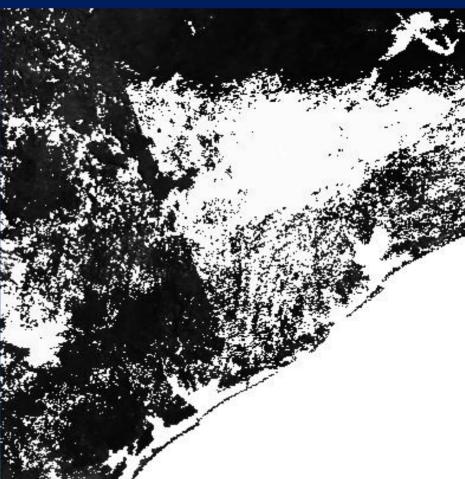
··· Top of atmosphere NDVI — Surface reflectance NDVI

Improved Cloud Screening

- Old method
 - Simple threshold of channel 1 (red) brightness
 - Does not work well over bright soils (desert southwest)
 - Does not work well with thin clouds over dark surfaces

Improved Cloud Screening

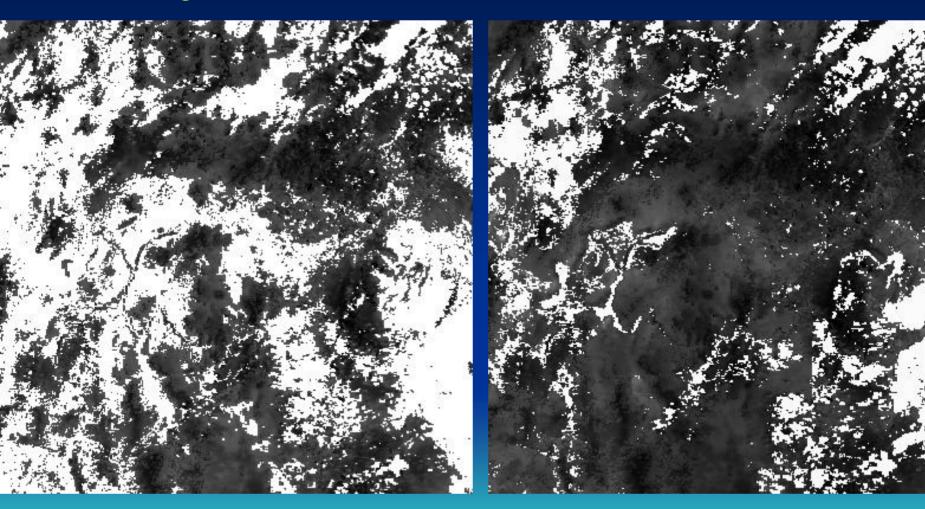

- New method
 - Use modified Clouds from AVHRR (CLAVR) method (Stowe et al 1999)
 - Series of test using brightness, surface temperature thresholds and ratios, simple vegetation index, latitude, barren land mask
 - Modified for use on composites by eliminating spatial tests



Area of thin clouds over dark surface

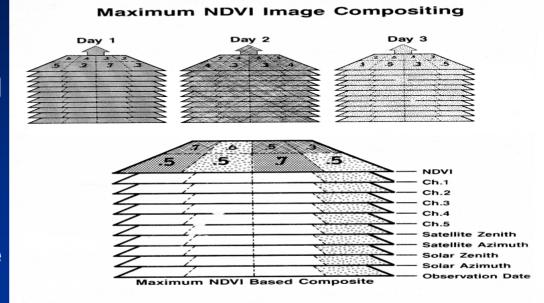
Brightness threshold

CLAVR method



Bright surface in desert southwest

Brightness threshold


CLAVR method

Compositing

- Weekly and biweekly composites
- Using the maximum value compositing (MVC) method (Holben 1986).
- The maximum NDVI is assumed to represent the maximum vegetation "greenness,"
- Two geometric criterion are used in the compositing:
 - pixels with a solar zenith angle greater than 80 degrees are not used
 - Pixels >45° off nadir are not used

Anomaly Products

- Anomaly products characterize the NDVI in terms of growing season status. These products are: visual greenness (VG), relative greenness (RG), and departure from average (DA)
- Visual greenness maps portray current NDVI compared to a standard value that represents a very green reference such as an alfalfa field. VG is calculated using the formula:

 $VG_t = NDVI_t / 0.66 * 100$ where:

NDVI_t is the NDVI value for the current composite period 0.66 is a typical maximum NDVI observed over dense green vegetation

Visual greenness values range from 0 to 100.

Anomaly Products


Relative greenness (RG) maps indicate current vegetation greenness compared to a historically observed NDVI range. RG is calculated using the formula:

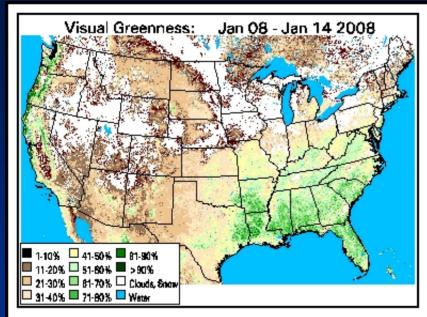
 $RG_t = (NDVI_t - Min) / Range * 100$ where

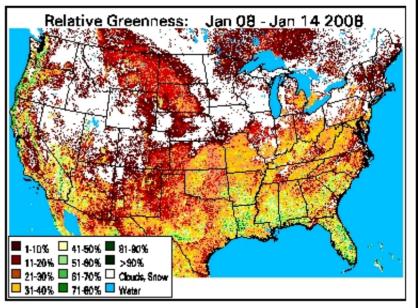
NDVI_t is the NDVI value for the current composite period Min is the historical minimum NDVI value for a location Max is the historical maximum NDVI value for a location

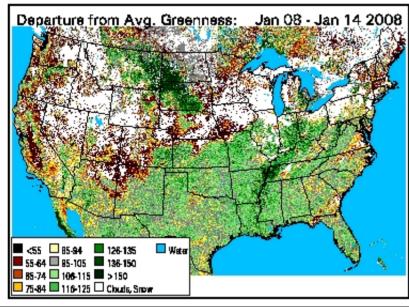
Range = Max - Min

Wide range means small incremental changes of ndvi are not significant
Narrow range means means small incremental changes of ndvi are significant

Anomaly Products


 Departure from average (DA) contrasts current-year greenness with average greenness for the same time of year.
 The DA is calculated using the formula:


DAt = $NDVI_t/NDVI_{mt}^*100$ where:


NDVI_t =NDVI for the current time period
NDVI_{mt} =mean NDVI for the current time period
DA_t=departure from average NDVI for the current period

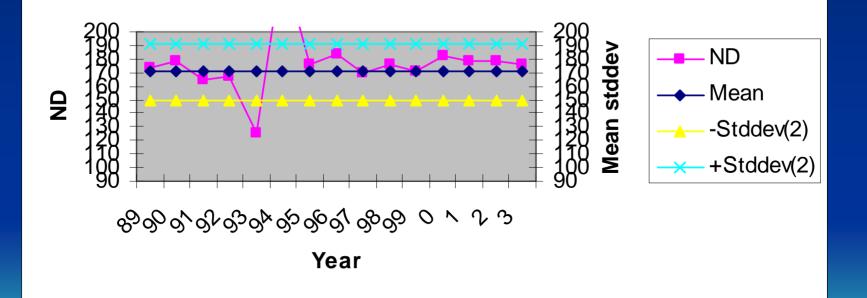
 Positive departure from average values indicates that the vegetation is healthy and developing normally for the specific vegetation type. Low values during the growing season indicate that the vegetation is under stress, possibly from drought, or is behind in development.

Improving the Data

- Cloud contamination is a leading reason for lower minimum values, lower "average" values
- The lower values corrupt the metrics used to calculate the anomaly products

Deriving the mean

- Mean computed from cloud free observations
- So the old mean was depressed by clouds
- Therefore, for any observation to be below normal, it had to be very low
 - Not sensitive



Year NDVI Mean -2stdv +2stdv cloud screened

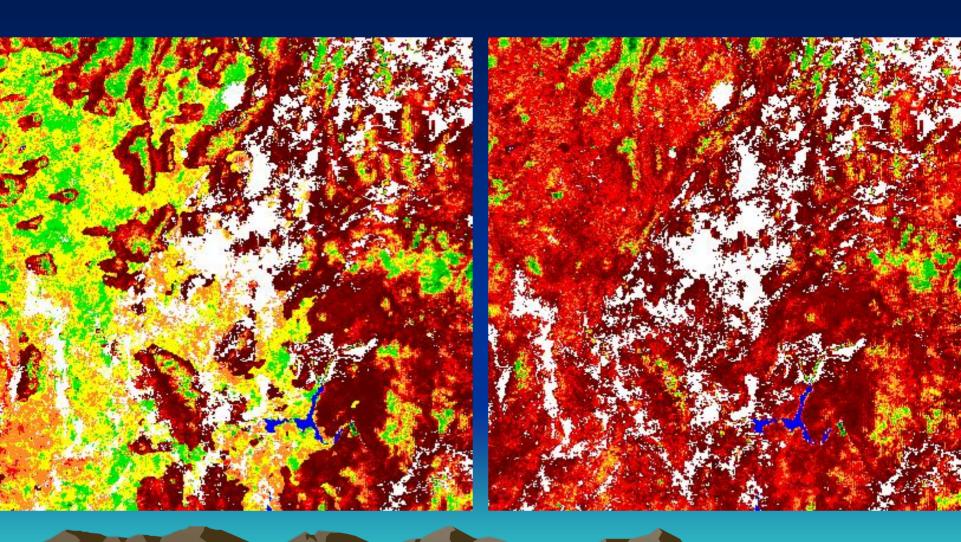
89	173	170.6154	149.6154	191.6154	173
90	179	170.6154	149.6154	191.6154	179
91	164	170.6154	149.6154	191.6154	164
92	167	170.6154	149.6154	191.6154	167
93	125	170.6154	149.6154	191.6154	125
94	250	170.6154	149.6154	191.6154	
95	176	170.6154	149.6154	191.6154	176
96	183	170.6154	149.6154	191.6154	183
97	170	170.6154	149.6154	191.6154	170
98	176	170.6154	149.6154	191.6154	176
99	171	170.6154	149.6154	191.6154	171
0	182	170.6154	149.6154	191.6154	
1	179	170.6154	149.6154	191.6154	179
2	179	170.6154	149.6154	191.6154	179
3	176	170.6154	149.6154	191.6154	176
					170.6154
					14.70566

Anomalous value

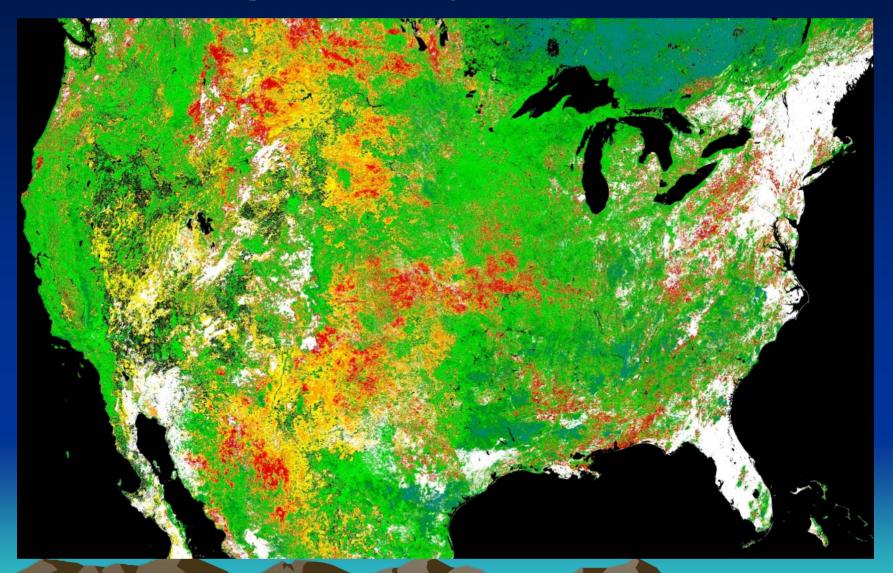
Period32 Stack3 (1137 2326 1 1)

Year NDVI Mean -2stdv +2stdv cloud screened

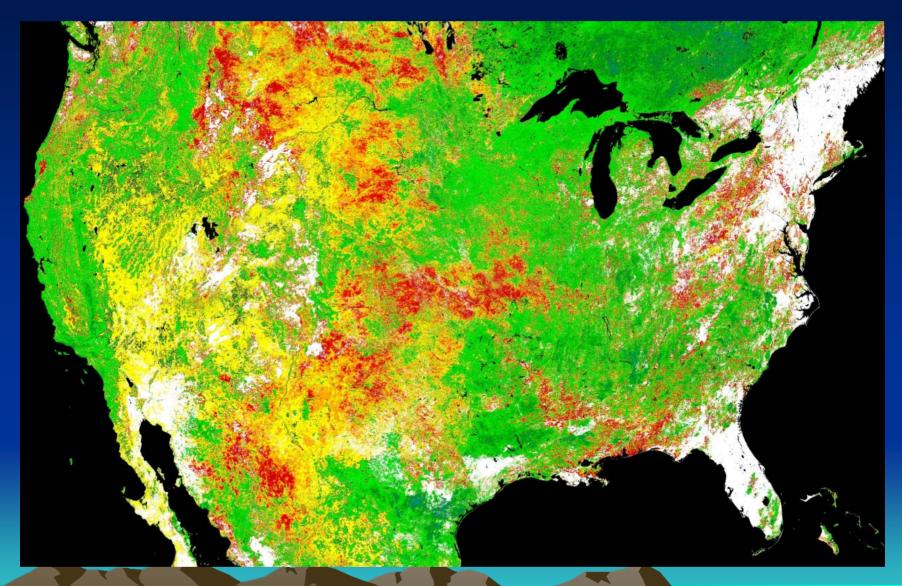
89	173	163.4286	142.4286	184.4286	173
90	161	163.4286	142.4286	184.4286	161
91	145	163.4286	142.4286	184.4286	145
92	155	163.4286	142.4286	184.4286	155
93	154	163.4286	142.4286	184.4286	154
94	166	163.4286	142.4286	184.4286	166
95	170	163.4286	142.4286	184.4286	170
96	157	163.4286	142.4286	184.4286	157
97	169	163.4286	142.4286	184.4286	169
98	176	163.4286	142.4286	184.4286	176
99	174	163.4286	142.4286	184.4286	174
0	161	163.4286	142.4286	184.4286	
1	152	163.4286	142.4286	184.4286	152
2	164	163.4286	142.4286	184.4286	164
3	172	163.4286	142.4286	184.4286	172
					163.4286
					9.581346


Anomalous value

Southwestern US – Aug. 6, 2003


Old Relative Greenness

New Relative Greenness



Old departure from average

New departure from average

Product Description

- Calibrated data (Bands 1-5)
- NDVI (6)
- Satellite Viewing Geometry (Bands 7-9)
- Atmospherically corrected Red and NIR(Bands 10-11)
- Quality control (Band 12)
- Day of Acquisition pointer (Band 13)
- Cloud mask (Band 14)

Product Description

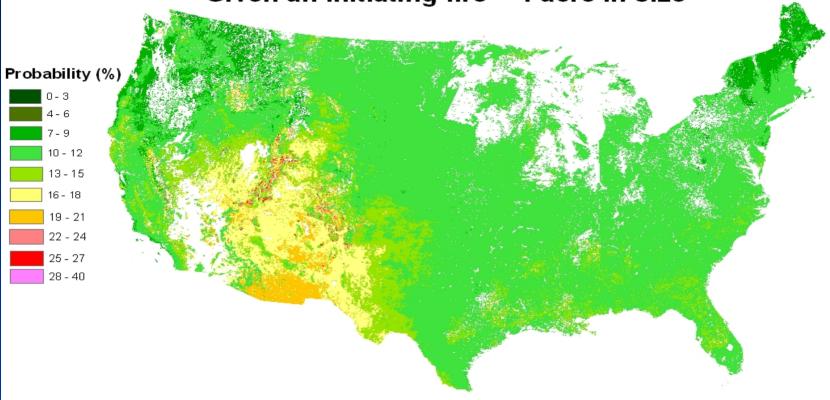
- The products are scaled to byte (8-bit) data.
- Reflectance values for channels 1, 2, and 3A are converted to byte data, where the range 0–254 represents 0–63.5 percent reflectance. The value 255 corresponds to reflectance greater than 63.5 percent.
- Channel 3B, 4, and 5 are converted to brightness temperature (Kelvin). Brightness temperatures a scaled to byte data. A scaling factor of 202.5 is subtracted from the brightness temperature value, and the difference is multiplied by 2 to maintain one half percent accuracy (i.e., a brightness temperature of 280 becomes 155).

Product Description

- Resolutions
 - 1-km
- Map projection
 - Lambert Azimuthal Equal Area (CUS)
 - Albers Equal Area (Alaska)
- File format
 - flat binary raster, band sequential format
- Geographic extent
 - Conterminous United States (48 states) or Alaska

Data Quality Issues

- The conterminous United States and Alaska data sets have no correction for stratospheric aerosol
- Orbital Drift of NOAA-14
 - Drift causes observation time to become later each day, for NOAA-14 it was beyond 5pm
- Cloud contamination
- Geometric accuracy



Fire Danger Monitoring

- Predict probability of large fires
 - Use RG to characterize vegetation condition
 - Live moisture
 - Use weather model data to calculate dead fuel moisture (NAM)
 - Use NDFD to calculate 7-day forecast fuel moisture
 - Calculate fire potential index
 - Integrate historical large fire occurrence
 - Derive large fire probability

Probability of a Fire Becoming Large - June 5, 2007 Given an initiating fire > 1 acre in size

Data Access

- Free for download from USGS EarthExplorer (http://edcsns17.cr.usgs.gov/EarthExplorer/).
 - The individual composites are all 14 bands, compressed.
- Current composites and the anomaly maps can be viewed and downloaded at the USGS Integrated Vegetation Mapping (IVM) website (http://ivm.cr.usgs.gov/viewer).
- For further information contact:

Customer Services
U.S. Geological Survey
EROS
47914 252nd Street
Sioux Falls, SD 57198-0001
Email: custserv@usgs.gov

Tel: 800-252-4547 Tel: 605-594-6151

TDD: 605-594-6933 **Fax**: 605-594-6589

